The graph of a function g is shown below. Find its inverse.

Answer:
[tex]f^{-1}(x)=\frac{5}{2}x+5[/tex]
Step-by-step explanation:
step 1
Find the equation of the graph
Let
[tex]A(0,-2), B(5,0)[/tex]
The slope of the linear equation is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
substitute the values
[tex]m=\frac{0+2}{5-0}[/tex]
[tex]m=\frac{2}{5}[/tex]
The equation of the line into point-slope form is equal to
[tex]y-y1=m(x-x1)[/tex]
substitute
[tex]y-0=\frac{2}{5}(x-5)[/tex]
[tex]y=\frac{2}{5}x-2[/tex] --------> linear equation of the graph
Step 2
Find the inverse function
Exchanges the variables x for y and y for x
[tex]x=\frac{2}{5}y-2[/tex]
Isolate the variable y
[tex]y=\frac{5}{2}x+5[/tex]
Let
[tex]f^{-1}(x)=y[/tex]
[tex]f^{-1}(x)=\frac{5}{2}x+5[/tex] --------> inverse of the function of the graph