Respuesta :

Space

Answer:

[tex]\displaystyle F'(t) = 2e^{8t} \bigg( \cos (2x) + 4 \sin (2x) \bigg)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle F(t) = e^{8t} \sin 2t[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle F'(t) = (e^{8t})' \sin 2t + e^{8t}(\sin 2t)'[/tex]
  2. Exponential Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle F'(t) = e^{8t}(8t)' \sin 2t + e^{8t}(\sin 2t)'[/tex]
  3. Trigonometric Differentiation [Derivative Rule - Chain Rule]:                   [tex]\displaystyle F'(t) = e^{8t}(8t)' \sin 2t + e^{8t} \cos 2t (2t)'[/tex]
  4. Basic Power Rule [Derivative Property - Multiplied Constant]:                 [tex]\displaystyle F'(t) = 8e^{8t} \sin 2t + 2e^{8t} \cos 2t[/tex]
  5. Factor:                                                                                                           [tex]\displaystyle F'(t) = 2e^{8t} \bigg( \cos (2x) + 4 \sin (2x) \bigg)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation