Respuesta :

(r/s)(6)=[tex] \frac{r(6)}{s(6)}= \frac{3(6)-1}{2(6)+1}= \frac{18-1}{12+1}= \frac{17}{13} [/tex]

Answer:

[tex]\frac{r(6)}{s(6)}=\frac{17}{13}[/tex]

Step-by-step explanation:

Given: r(x)=3x-1 and s(x)= 2x+1

We have to find [tex]\frac{r}{s}(6)[/tex]

That is to find  [tex]\frac{r}{s}(6)=\frac{r(6)}{s(6)}[/tex]

first find r (6) and s(6) , then substitute, we get,

r(6)

r(x) = 3x - 1

Put x = 6 , we get

r(6) = 3(6) -1 = 18 - 1 = 17

s(6)

s(x) = 2x + 1

Put x = 6 , we get

s(6) = 2(6) + 1 = 12 + 1 = 13

Thus,  

[tex]\frac{r(6)}{s(6)}=\frac{17}{13}[/tex]