Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

[tex]\boxed{\boxed{\dfrac{2}{x^2+x}-\dfrac{1}{x}=\dfrac{1-x}{x(x+1)}}}[/tex]

Step-by-step explanation:

The given expression is,

[tex]\dfrac{2}{x^2+x}-\dfrac{1}{x}[/tex]

Factoring [tex]x^2+x[/tex],

[tex]x^2+x=x(x+1)[/tex]

Hence,

[tex]=\dfrac{2}{x(x+1)}-\dfrac{1}{x}[/tex]

[tex]\mathrm{Least\:Common\:Multiplier\:of\:}x\left(x+1\right),x = x\left(x+1\right)[/tex]

So,

[tex]=\dfrac{2-(x+1)}{x(x+1)}[/tex]

[tex]=\dfrac{2-x-1}{x(x+1)}[/tex]

[tex]=\dfrac{1-x}{x(x+1)}[/tex]