Respuesta :

SJ2006
Cube root of 27 a^12 will be:  3 a^4.

Answer:

Cube-root defines: A number is a special value that, when used in a multiplication three times, gives that number.

Its symbol is denoted by: [tex]\sqrt[3]{}[/tex]

USing Law of radical:

1. [tex]\sqrt[n]{ab}= \sqrt[n]{a} \cdot \sqrt[n]{b}[/tex]

2. [tex]\sqrt[n]{x^n} =(\sqrt[n]{x} )^n =\sqrt[n]{x^n} =x[/tex]

To find the cube root of [tex]27a^{12}[/tex] ;

By the definition of cube root

[tex]\sqrt[3]{27 a^{12}}[/tex] = [tex]\sqrt[3]{27} \cdot \sqrt[3]{a^{12}}[/tex] [Using [1]]

we can write 27 as [tex]3 \times 3 \times 3 = 3^3[/tex] and [tex]a^{12} = (a^4)^3[/tex]

then;

[tex]\sqrt[3]{27 a^{12}}[/tex] = [tex]\sqrt[3]{3^3} \cdot \sqrt[3]{a^{4}^3}[/tex]

 = [tex]3 \cdot a^4[/tex]       [ Using [2] ]

therefore, the cube root of [tex]27a^{12}[/tex] is [tex]3a^4[/tex]