Let the two numbers be x and y, then,
xy = -12 . . . (1)
x + y = -10 . . . (2)
From (2), x = -10 - y . . . (3)
Putting (3) into (1), gives
(-10 - y)y = -12
-10y - y^2 = -12
y^2 + 10y - 12 = 0
[tex]y= \frac{-10\pm \sqrt{10^2-(4\times(-12))} }{2} = \frac{-10\pm \sqrt{148} }{2} = \frac{-10\pm 2\sqrt{37} }{2} = -5\pm\sqrt{37}[/tex]
Therefore, the two numbers are [tex]-5+\sqrt{37}[/tex] and [tex]-5-\sqrt{37}[/tex]