Respuesta :

Answer:

The equation of the line is:

[tex]y=2x-1[/tex]

Step-by-step explanation:

Given the points

  • (-2, -5)
  • (1, 1)

Finding the slope between the points

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-2,\:-5\right),\:\left(x_2,\:y_2\right)=\left(1,\:1\right)[/tex]

[tex]m=\frac{1-\left(-5\right)}{1-\left(-2\right)}[/tex]

[tex]m=2[/tex]

We know the slope-intercept form of the line equation

[tex]y=mx+b[/tex]

where m is the slope and b is the slope-intercept form

substituting the value m=2 and the point (-2, -5) to find the b-intercept

[tex]y=mx+b[/tex]

-5 = 2(-2) + b

b = -5+4

b = -1

Now, substituting m=2 and b=-1 in the slope-intercept form to get the equation of a line

y=mx+b

y=2x+(-1)

y=2x-1

Thus, the equation of the line is:

[tex]y=2x-1[/tex]