Respuesta :

Answer:

The first term of the sequence is 512 or -512

Step-by-step explanation:

Geometric Progression

The general term n of a geometric progression of first term a1 and common ratio r is:

[tex]a_n =a_1\cdot r^{n-1}[/tex]

We are given:

[tex]a_4=8[/tex]

[tex]\displaystyle a_6=\frac{1}{2}[/tex]

Applying the equation for n=4:

[tex]a_4 =a_1\cdot r^{4-1}[/tex]

[tex]a_4 =a_1\cdot r^{3}[/tex]

We have:

[tex]a_1\cdot r^{3}=8\qquad\qquad[1][/tex]

Applying the equation for n=6:

[tex]a_6 =a_1\cdot r^{6-1}[/tex]

[tex]a_6 =a_1\cdot r^{5}[/tex]

We have:

[tex]\displaystyle a_1\cdot r^{5}=\frac{1}{2} \qquad\qquad[2][/tex]

Dividing [2] by [1]:

[tex]\displaystyle \frac{r^{5}}{r^{3}}=\frac{\frac{1}{2}}{8}[/tex]

Operating:

[tex]\displaystyle r^{2}=\frac{1}{16}[/tex]

Taking the square root:

[tex]\displaystyle r=\sqrt{\frac{1}{16}}=\pm \frac{1}{4}[/tex]

There are two possible solutions:

[tex]\displaystyle r=\frac{1}{4}[/tex]

[tex]\displaystyle r=-\frac{1}{4}[/tex]

From [1]:

[tex]\displaystyle a_1 =\frac{8}{r^{3}}[/tex]

This gives also two possibles solutions for a1:

[tex]\displaystyle a_1 =\frac{8}{\left(\frac{1}{4}\right)^{3}} =512[/tex]

[tex]\displaystyle a_1 =\frac{8}{\left(-\frac{1}{4}\right)^{3}} =-512[/tex]

Thus, the first term of the sequence is 512 or -512