Answer:
converting [tex](24C)^{\frac{2}{3}}[/tex] into radical form we get [tex]\mathbf{4\sqrt[3]{(3C)^2} }[/tex]
Step-by-step explanation:
We are given: [tex](24C)^{\frac{2}{3}}[/tex]
And we need to convert into radical
We know that [tex]\frac{1}{3}=\sqrt[3]{x}[/tex]
Prime factors of 24 are: 2x2x2x3
Solving:
[tex](24C)^{\frac{2}{3}}\\=(2 \times 2 \times 2 \times3\times C)^{\frac{2}{3}}\\=(2^3)^{\frac{2}{3}}((3\timesC)^{\frac{2}{3}})\\=2^2((3\timesC)^{\frac{2}{3}})\\=4\sqrt[3]{(3C)^2}[/tex]
So, converting [tex](24C)^{\frac{2}{3}}[/tex] into radical form we get [tex]\mathbf{4\sqrt[3]{(3C)^2} }[/tex]