Answer:
y = [tex]\frac{2}{3}[/tex]x + 11[tex]\frac{1}{3}[/tex]
Step-by-step explanation:
The equation of a straight line is: y = mx+c where m is the slope of the line and c is the y-intercept of a line.
Slope = [tex]\frac{rise}{run}[/tex]
= [tex]\frac{14-10}{4-(-2)}[/tex]
= [tex]\frac{4}{6}[/tex]
= [tex]\frac{2}{3}[/tex]
To find the y-intercept, we can use one of the points to apply for the equation before finding the y-intercept. I will be using the point (4,14).
y = [tex]\frac{2}{3}[/tex]x + c
14 = [tex]\frac{2}{3}[/tex]×4 + c
14 = 2[tex]\frac{2}{3}[/tex] + c
c = 14-2[tex]\frac{2}{3}[/tex]
c = 11[tex]\frac{1}{3}[/tex]
Thus, the y-intercept is 11[tex]\frac{1}{3}[/tex].