Triangle PQR is transformed to triangle P′Q′R′. Triangle PQR has vertices P(4, 0), Q(0, −4), and R(−8, −4). Triangle P′Q′R′ has vertices P′(1, 0), Q′(0, −1), and R′(−2, −1). Plot triangles PQR and P′Q′R′ on your own coordinate grid. Part A: What is the scale factor of the dilation that transforms triangle PQR to triangle P′Q′R′? Explain your answer

Respuesta :

Answer:

Scale factor is [tex]\frac{1}{4}[/tex].

Step-by-step explanation:

Given the coordinates of [tex]\triangle PQR[/tex] as:

[tex]P(4, 0)\\Q(0, -4)\\R(-8, -4)[/tex]

And the coordinates of [tex]\triangle P' Q' R'[/tex] as:

[tex]P'(1, 0)\\Q'(0, -1)\\R'(-2, -1)[/tex]

To find:

The scaling factor of the dilation to transform the [tex]\triangle PQR[/tex] to [tex]\triangle P' Q' R'[/tex].

Solution:

First of all, let us find the distance between the vertices i.e. the sides of the triangle.

Distance formula:

[tex]D = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Where [tex](x_1,y_1), (x_2,y_2)[/tex] are the coordinates of two points between which the distance is to be calculated.

[tex]PQ = \sqrt{4^2+4^2} = 4\sqrt2[/tex]

[tex]QR = \sqrt{8^2+0^2} = 8[/tex]

[tex]PR = \sqrt{4^2+12^2} = 4\sqrt{10}[/tex]

Now, let us find the sides of the [tex]\triangle P' Q' R'[/tex]:

[tex]P' Q' = \sqrt{1^2+1^2} = \sqrt{2}[/tex]

[tex]Q' R' = \sqrt{2^2+0^2} = 2[/tex]

[tex]P' R' = \sqrt{3^2+1^2} = \sqrt{10}[/tex]

We can clearly see that, the sides of [tex]\triangle PQR[/tex] are four times the corresponding sides of [tex]\triangle P' Q' R'[/tex].

Therefore, the scaling factor is [tex]\frac{1}{4}[/tex].

Please refer to the attache image in the answer area.

Ver imagen isyllus