Help please!! Will give out brainliest and +20 pts (proof is in picture)
Topic: calculus integrals
I had this same problem on my previous homework but now I’m getting the same question and it’s telling me that my equation is incorrect? Why is that so?

Help please Will give out brainliest and 20 pts proof is in picture Topic calculus integrals I had this same problem on my previous homework but now Im getting class=
Help please Will give out brainliest and 20 pts proof is in picture Topic calculus integrals I had this same problem on my previous homework but now Im getting class=

Respuesta :

Space

Answer:

[tex]\int\limits^1 _\frac{1}{2} {\frac{-1}{u} } \, du[/tex]

General Formulas and Concepts:

Pre-Algebra

  • Order of Operations: BPEMDAS

Calculus

  • Derivative of trig: [tex]\frac{d}{dx} [cos(x)] = -sin(x)[/tex]
  • Integral of 1/u: [tex]\int\limits {\frac{1}{u} } \, du = ln|u|[/tex]
  • Fundamental Theory of Calculus Part 1: [tex]\int\limits^a_b {f(x)} \, dx = F(b)-F(a)[/tex]
  • Integral Solving Methods - u-substitution

Step-by-step explanation:

Step 1: Define

[tex]\int\limits^\frac{-\pi}{2} _\frac{-2\pi}{3} {\frac{sin(x)}{1+cos(x)} } \, dx[/tex]

Step 2: Evaluate

  1. Define a u:                             u = 1 + cos(x)
  2. Define du:                              du = -sin(x)dx
  3. Rewrite integral:                    [tex]-\int\limits^\frac{-\pi}{2} _\frac{-2\pi}{3} {\frac{-sin(x)}{1+cos(x)} } \, dx[/tex]
  4. u-substitute:                          [tex]-\int\limits^\frac{-\pi}{2} _\frac{-2\pi}{3} {\frac{1}{u} } \, du[/tex]
  5. Change limits [a]:                 a = 1 + cos(-π/2) = 1
  6. Change limits [b]:                 b = 1 + cos(-2π/3) = 1/2
  7. Change limits:                      [tex]-\int\limits^1 _\frac{1}{2} {\frac{1}{u} } \, du[/tex]

Step 3: Evaluate Further

  1. Integrate:                    [tex]-(ln|u|)|\limits^1_\frac{1}{2}[/tex]
  2. FTC Part 1:                  [tex]-(ln|1|-ln|\frac{1}{2} |)[/tex]
  3. Evaluate:                    [tex]-ln|2|[/tex]
  4. Evaluate:                    [tex]-0.693147[/tex]