Functions h and k are inverse functions, and both are defined for all real numbers using this relationship, what is the value of each function composition

Functions h and k are inverse functions and both are defined for all real numbers using this relationship what is the value of each function composition class=

Respuesta :

Answer:

(h o k)(3) = 3

(k o h)(-4b) = -4b

Step-by-step explanation:

If f(x) and g(x) are inverses, then (f o g)(x) = (g o f)(x) = x

(h o k)(3) = 3

(k o h)(-4b) = -4b

The value of the given composite functions:

1) [tex](h\circ k)(3)=\bold{3}[/tex]

2) [tex](k \circ h)(-4b)=\bold{-4b}[/tex]

What is composite function?

  • A function made of other functions, where the output of one is the input to the other.
  • For functions f(x) and g(x), a composite function is ,[tex](f\circ g)(x)=f(g(x))[/tex]                                                                 [tex](g\circ f)(x)=g(f(x))[/tex]

What is mean by two functions are inverses?

  • When two functions are inverses, then each will reverse the effect of the other.
  • For the functions f and g,                                                                               [tex](f\circ g)(x) = x[/tex] and [tex](g\circ f)(x)=x[/tex]

For given example,

The functions h and k are inverse functions.

So for any real input value 'x',

⇒ [tex](h \circ k)(x) = x[/tex]  and [tex](k \circ h)(x)=x[/tex]

So, the value of the given composite functions would be,

1) [tex](h\circ k)(3)=\bold{3}[/tex]

2) [tex](k \circ h)(-4b)=\bold{-4b}[/tex]

Learn more about composite function here:
https://brainly.com/question/27659185

#SPJ2