Functions h and k are inverse functions, and both are defined for all real numbers using this relationship, what is the value of each function composition

Answer:
(h o k)(3) = 3
(k o h)(-4b) = -4b
Step-by-step explanation:
If f(x) and g(x) are inverses, then (f o g)(x) = (g o f)(x) = x
(h o k)(3) = 3
(k o h)(-4b) = -4b
The value of the given composite functions:
1) [tex](h\circ k)(3)=\bold{3}[/tex]
2) [tex](k \circ h)(-4b)=\bold{-4b}[/tex]
For given example,
The functions h and k are inverse functions.
So for any real input value 'x',
⇒ [tex](h \circ k)(x) = x[/tex] and [tex](k \circ h)(x)=x[/tex]
So, the value of the given composite functions would be,
1) [tex](h\circ k)(3)=\bold{3}[/tex]
2) [tex](k \circ h)(-4b)=\bold{-4b}[/tex]
Learn more about composite function here:
https://brainly.com/question/27659185
#SPJ2