nbc1197
contestada

At the indicated point find (a) the slope of the curve and (b) an equation of the tangent line.
f(x)= 6x at (-2,-3)

Respuesta :

Space

Answer:

Slope of the Curve: [tex]f'(x)=\frac{-6}{x^2}[/tex]

Equation of Tangent Line: y + 3 = -3/2(x + 2)

General Formulas and Concepts:

Pre-Algebra

  • Order of Operations: BPEMDAS

Algebra I

Point-Slope Form: y - y₁ = m(x - x₁)  

  • x₁ - x coordinate
  • y₁ - y coordinate
  • m - slope

Calculus

The definition of a derivative is the slope of the tangent line.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: [tex]\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

[tex]f(x)=\frac{6}{x}[/tex]

Step 2: Take Derivative

  1. Quotient Rule:                    [tex]f'(x)=\frac{0(x)-6(1)}{x^2}[/tex]
  2. Multiply:                              [tex]f'(x)=\frac{0-6}{x^2}[/tex]
  3. Subtract:                             [tex]f'(x)=\frac{-6}{x^2}[/tex]

Step 3: Find Instantaneous Derivative

  1. Substitute in x:                     [tex]f'(x)=\frac{-6}{(-2)^2}[/tex]
  2. Exponents:                           [tex]f'(x)=\frac{-6}{4}[/tex]
  3. Simplify:                               [tex]f'(x)=\frac{-3}{2}[/tex]

This value shows the slope of the tangent line at the exact value of x = 2.

  1. Substitute:                    y + 3 = -3/2(x + 2)