What is the partial pressure of hydrogen gas in a mixture that contains 6.00 grams of hydrogen gas and 1.80 mol carbon dioxide with a total pressure of 12.0 atm?

Respuesta :

Neetoo

Answer:

P(H₂ ) =  7.5 atm

Explanation:

Given data:

Mass of hydrogen = 6.00 g

Number of moles of CO₂ = 1.80 mol

Total pressure = 12.0 atm

Partial pressure of H₂ = ?

Solution:

Number of moles of H₂:

Number of moles = mass/molar mass

Number of moles = 6.00 g/ 2 g/mol

Number of moles = 3 mol

Partial pressure of gases:

Total number of moles present = 1.80 mol + 3 mol = 4.80 mol

P(H₂ ) = [ 3 mol/ 4.80 mol] × 12.0 atm

P(H₂ ) = 0.625× 12.0 atm

P(H₂ ) =  7.5 atm

P(CO₂) = [1.80 mol/4.80 mol] × 12.0 atm

P(CO₂) = 0.375 × 12.0 atm

P(CO₂) = 4.5 atm

Lanuel

The partial pressure of hydrogen is equal to 7.5 atm.

Given the following data:

  • Number of moles of carbon dioxide = 1.80 moles.
  • Mass of hydrogen = 6.00 grams.
  • Total pressure = 12.0 atm.

Scientific data:

  • Molar mass of hydrogen = 2 g/mol.

To determine the partial pressure of hydrogen:

First of all, we would calculate the number of moles of hydrogen:

[tex]Number\;of\;moles = \frac{mass}{molar\;mass}\\\\Number\;of\;moles = \frac{6.00}{2}[/tex]

Number of moles = 3 moles

Next, we would determine the partial pressure of hydrogen:

[tex]Molefraction \;of \;a \;substance =\frac{No.\; of \; moles \;of \;substance}{Total \;no. \;of \; moles \;of \;substances}[/tex]

Substituting the values, we have:

[tex]Molefraction \;of \;a \;substance =\frac{3}{4.8} \\\\Molefraction \;of \;a \;substance =0.625[/tex]

For hydrogen:

[tex]Partial \;pressure = Molefraction \times Total\;pressure\\\\Partial \;pressure = 0.625 \times 12.0[/tex]

Partial pressure of hydrogen = 7.5 atm.

Read more: https://brainly.com/question/15508465