When p(x)=9x4-45x3+37x2+x+2
is divided by x-2, a student can
determine the remainder by
evaluating p(2). What is the
value of p(2)?

Respuesta :

Answer:

The value:

  • [tex]p\left(2\right)=-32[/tex]

Step-by-step explanation:

Given the function

[tex]p\left(x\right)=9x^4-45x^3+37x^2+x+2[/tex]

substituting x=2 to get p(2)

[tex]p\left(2\right)=9\left(2\right)^4-45\left(2\right)^3+37\left(2\right)^2+\left(2\right)+2[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]

[tex]p\left(2\right)=9\cdot \:2^4-45\cdot \:2^3+37\cdot \:2^2+2+2[/tex]

[tex]\mathrm{Add\:the\:numbers:}\:2+2=4[/tex]

[tex]p\left(2\right)=2^4\cdot \:9+2^2\cdot \:37+4-2^3\cdot \:45[/tex]

[tex]p\left(2\right)=144+148+4-360[/tex]

[tex]p\left(2\right)=-64[/tex]

[tex]p\left(2\right)=-32[/tex]

Thus, the value:

  • [tex]p\left(2\right)=-32[/tex]