Answer:
The distance is:
d = 10.0 units (Rounded to the nearest the Tenths Place)
Step-by-step explanation:
Given the points
The distance 'd' between (3,4) and (4,-6)
[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):[/tex]
[tex]d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
substituting the points values
[tex]=\sqrt{\left(4-3\right)^2+\left(-6-4\right)^2}[/tex]
[tex]=\sqrt{1+10^2}[/tex]
[tex]=\sqrt{1+100}[/tex]
[tex]=\sqrt{101}[/tex]
[tex]=10.0[/tex] units (Rounded to the nearest the Tenths Place)
Thus, the distance is:
d = 10.0 units (Rounded to the nearest the Tenths Place)