Respuesta :

Explanation:

[tex]\sqrt{} (x_{2} - x_{1} ) ^{2} + (y_{2} - y_{1})^{2} \\\\\sqrt{} (0 - a) ^{2} + (b - 0)^{2} \\\\\sqrt{} (0^{2} + a^{2} } - 2ab) + (b^{2} + 0^{2} } - 2xbx0)\\\sqrt{} (0^{2} + a^{2} ) + (b^{2} + 0^{2} )\\\sqrt{} a^{2} + b^{2}[/tex]

Answer:

d = sqrt( a^2 + b^2)

Explanation:

Formula

d = sqrt( (x2 - x1)^2 + (y2 - y1)^2  )

Givens

x1 = a

x2 = 0

y1 = 0

y2 = b

Solution

d = sqrt( (0 - a)^2 + (b - 0)^2 )

d = sqrt( a^2 + b^2)

which is another way of writing the Pythagorean theorem.