Respuesta :

Let y be the expression you want to differentiate:

[tex]y=\log_7(5-3x) \implies 7^y=5-3x[/tex]

Now,

[tex]7^y=e^{\ln(7^y)}=e^{y\ln(7)}[/tex]

Use the chain rule to differentiate both sides with respect to x :

[tex]\ln(7)e^{y\ln(7)}\dfrac{\mathrm dy}{\mathrm dx}=-3[/tex]

Solve for dy/dx :

[tex]\ln(7)7^y\dfrac{\mathrm dy}{\mathrm dx}=-3[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac3{\ln(7)7^y}[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\boxed{-\dfrac3{\ln(7)(5-3x)}}[/tex]