Answer:
We proved that [tex]-3(2x+7) = -29 - 4x[/tex] gives [tex]\mathbf{x=4}[/tex]
Step-by-step explanation:
We are given: [tex]-3(2x+7) = -29 - 4x[/tex]
We need to prove x=4
Statements Reasons
[tex]-6x-21=-29-4x[/tex] Distributive property of multiplication over subtraction
[tex]-6x-21+4x=-29-4x+4x[/tex] Addition property of equality
[tex]2x-21=-29[/tex] Additive inverse property (+4x-4x=0)
[tex]2x-21+21=-29+21[/tex] Addition property of equality
[tex]2x=8[/tex] Additive inverse property
[tex]2x/2=8/2[/tex] Division property of equality
[tex]x=4[/tex] Answer
So, We proved that [tex]-3(2x+7) = -29 - 4x[/tex] gives [tex]\mathbf{x=4}[/tex]