Respuesta :

Answer:

The approximate angle of [tex]\vec u = \frac{1}{2}\cdot \vec v[/tex], where [tex]\vec v = \langle 10, 15\rangle[/tex], is 56º.

Step-by-step explanation:

Let [tex]\vec v = \langle 10, 15\rangle[/tex] and [tex]\vec u = \frac{1}{2}\cdot \vec v[/tex], then the resulting vector is described below:

[tex]\vec u = \frac{1}{2}\cdot \langle 10,15\rangle[/tex]

[tex]\vec u = \left\langle 5,\frac{15}{2} \right\rangle[/tex]

From Trigonometry, we find that direction angle of this vector is defined by the following inverse trigonometric expression:

[tex]\theta = \tan^{-1}\left(\frac{u_{y}}{u_{x}} \right)[/tex] (1)

Where:

[tex]u_{x}[/tex] - x-Component of [tex]\vec u[/tex], dimensionless.

[tex]u_{y}[/tex] - y-Component of [tex]\vec u[/tex], dimensionless.

If we know that [tex]u_{x} = 5[/tex] and [tex]u_{y} = \frac{15}{2}[/tex], then the direction angle of the vector is:

[tex]\theta = \tan^{-1}\left(\frac{\frac{15}{2}}{5} \right)[/tex]

[tex]\theta =\tan^{-1} \frac{15}{10}[/tex]

[tex]\theta = \tan^{-1} \frac{3}{2}[/tex]

[tex]\theta \approx 56.310^{\circ}[/tex]

The approximate angle of [tex]\vec u = \frac{1}{2}\cdot \vec v[/tex], where [tex]\vec v = \langle 10, 15\rangle[/tex], is 56º.

Answer:

C. 124

Step-by-step explanation:

Ver imagen rileygreene47