Respuesta :

Answer:

[tex]j=10-3k[/tex]

[tex]y = 2x - 7[/tex]

Step-by-step explanation:

Solving (a):

Given

[tex]\frac{3j + k}{2}=15-4k[/tex]

Required: Prove [tex]j=10-3k[/tex]

[tex]\frac{3j + k}{2}=15-4k[/tex]

Multiply through by 2

[tex]2 * \frac{3j + k}{2}=(15-4k) * 2[/tex]

[tex]3j + k = 30 - 8k[/tex]

Subtract k from both sides

[tex]3j = 30 - 9k[/tex]

Divide through by 3

[tex]j = \frac{30 - 9k}{3}[/tex]

j = 10 - 3k

Solving (b):

Given

[tex]5x - 2y = x+ 14[/tex]

Required

Prove: [tex]y = 2x - 7[/tex]

[tex]5x - 2y = x+ 14[/tex]

Subtract 5x from both sides

[tex]-2y = x - 5x + 14[/tex]

[tex]-2y = -4x + 14[/tex]

Divide through by -2

[tex]\frac{-2y}{-2} = \frac{-4x}{-2} + \frac{14}{-2}[/tex]

[tex]y = 2x - 7[/tex]