Review the given functions. j (x) = 51 cosine (x + StartFraction pi Over 2 EndFraction) + 24 k (x) = 51 cosine (x minus StartFraction 3 pi Over 4 EndFraction) + 24 What is the transformation of function j(x) to function k(x)? a shift left StartFraction pi Over 4 EndFraction units a shift left StartFraction 5 pi over 4 EndFraction units a shift right StartFraction pi Over 4 EndFraction units a shift right StartFraction 5 pi over 4 EndFraction units

Respuesta :

Answer:

j(x) is shifted right by [tex]\frac{5\pi}{4}[/tex] units

Step-by-step explanation:

Given

[tex]j(x)= 51 cos(x + \frac{\pi}{2})[/tex]

[tex]k(x)= 51 cos(x - \frac{3\pi}{4})[/tex]

Required

Determine the transformation from j(x) to k(x)

The transformation shows a horizontal shift from j(x) to k(x).

First, we need to determine the unit shifter from j(x) to k(x) as follows;

[tex]j(x)= 51 cos(x + \frac{\pi}{2})[/tex]

Express [tex]\frac{\pi}{2}[/tex] as [tex]\frac{5\pi}{4}-\frac{3\pi}{4}[/tex]

So:

[tex]j(x)= 51 cos(x + \frac{\pi}{2})[/tex] becomes

[tex]j(x) = 51cos(x + \frac{5\pi}{4}-\frac{3\pi}{4})[/tex]

Reorder

[tex]j(x) = 51cos(x -\frac{3\pi}{4}+ \frac{5\pi}{4})[/tex]

Comparing this to k(x), we have:

[tex]k(x)= 51 cos(x - \frac{3\pi}{4})[/tex]

In other words:

[tex]k(x) = j(x - \frac{5\pi}{4})[/tex]

This implies that j(x) is shifted right by [tex]\frac{5\pi}{4}[/tex] units

Answer:

its D

Step-by-step explanation:

a shift right 5 π/4 units