Respuesta :

Answer:

f(x) = 1/25x² - 1

Step-by-step explanation:

Given that:

The quadratic function f(x) = y = ax² + bx + c

Replace (x,y) = (5,0)

0 = a5² + b5 + c

0 = 25a + 5b + c  ---- (1)

The differential eqaution;dt/dx = 2ax + b  at (x,y) = (0, -1) it has minimum.

Thus, dy/dx = 0

2ax + b = 0

2a(0) + b = 0

0 + b = 0

b = 0     --- (2)

Now, replace (x,y) = (0, - 1) into equation (1)

Then;

-1 = 0 + 0 + c

c = -1

From  equation (1)

0 = 25a + 5(b) + c

0 = 25a + 5(0) + c

c = - 25a

a = - c/25

a = -(-1)/25

a = 1/25

Therefore; the derived quadratic equation:

y = ax² + bx + c

y = 1/25x² + (0)(x) - 1

y = 1/25x² - 1

f(x) = 1/25x² - 1

The quadratic function that goes through (5,0) and has a local minimum at (0, -1) is [tex]f(x) =\frac{1}{25}x^2 -1[/tex]

The quadratic function is given as:

[tex]f(x) = ax^2 + bx +c[/tex]

It goes through point (5,0).

So, we have:

[tex]a(5)^2 + b(5) +c = 0[/tex]

[tex]25a + 5b +c = 0[/tex]

Also, we have:

[tex]f(x) = ax^2 + bx +c[/tex]

Differentiate

[tex]f'(x) = 2ax + b[/tex]

Set to 0

[tex]2ax + b = 0[/tex]

Substitute 0 for a

[tex]b = 0[/tex]

It has a local minimum at (0,-1).

So, we have:

[tex]a(0)^2 +b(0) + c = -1[/tex]

[tex]c = -1[/tex]

Recall that:

[tex]25a + 5b +c = 0[/tex]

This becomes

[tex]25a + 5(0) - 1 = 0[/tex]

[tex]25a- 1 = 0[/tex]

Collect like terms

[tex]25a = 1[/tex]

Solve for a

[tex]a = \frac{1}{25}[/tex]

Hence, the quadratic function is:

[tex]f(x) =\frac{1}{25}x^2 -1[/tex]

Read more about quadratic functions at:

https://brainly.com/question/1214333