The coordinates of the vertices of triangle ABC are A(3,6), B(6, 3), and C(9, 9). If triangle ABC Is dilated by 1/3x and 1/3y to create triangle A'B'C', which set of coordinates represents the vertices of triangle ABC?

Respuesta :

Answer:

[tex]A' = (1,2)[/tex]

[tex]B'=(2,1)[/tex]

[tex]C' =(3,3)[/tex]

Step-by-step explanation:

Given

[tex]A = (3,6)[/tex]

[tex]B = (6,3)[/tex]

[tex]C = (9,9)[/tex]

[tex]Scale = \frac{1}{3}[/tex]

Required

Determine the vertices of ABC

If truly the question asks for the vertices of ABC, then the vertices are:

[tex]A = (3,6)[/tex]   [tex]B = (6,3)[/tex]   [tex]C = (9,9)[/tex]

However, I'm quite sure that's not the requirement of the question. So, I'll solve for A'B'C'

To do this, we simply multiply the vertices of ABC by the scale of dilation.

[tex](A'B'C') = Scale\ Factor * (ABC)[/tex]

[tex]A' = \frac{1}{3} * A[/tex]

[tex]A' = \frac{1}{3} * (3,6)[/tex]

[tex]A' = (\frac{3}{3},\frac{6}{3})[/tex]

[tex]A' = (1,2)[/tex]

[tex]B' = \frac{1}{3} * B[/tex]

[tex]B' = \frac{1}{3} * (6,3)[/tex]

[tex]B' = (\frac{6}{3},\frac{3}{3})[/tex]

[tex]B'=(2,1)[/tex]

[tex]C' = \frac{1}{3} * C[/tex]

[tex]C' = \frac{1}{3} * (9,9)[/tex]

[tex]C' = (\frac{9}{3},\frac{9}{3})[/tex]

[tex]C' =(3,3)[/tex]