Answer:
[tex]A' = (1,2)[/tex]
[tex]B'=(2,1)[/tex]
[tex]C' =(3,3)[/tex]
Step-by-step explanation:
Given
[tex]A = (3,6)[/tex]
[tex]B = (6,3)[/tex]
[tex]C = (9,9)[/tex]
[tex]Scale = \frac{1}{3}[/tex]
Required
Determine the vertices of ABC
If truly the question asks for the vertices of ABC, then the vertices are:
[tex]A = (3,6)[/tex] [tex]B = (6,3)[/tex] [tex]C = (9,9)[/tex]
However, I'm quite sure that's not the requirement of the question. So, I'll solve for A'B'C'
To do this, we simply multiply the vertices of ABC by the scale of dilation.
[tex](A'B'C') = Scale\ Factor * (ABC)[/tex]
[tex]A' = \frac{1}{3} * A[/tex]
[tex]A' = \frac{1}{3} * (3,6)[/tex]
[tex]A' = (\frac{3}{3},\frac{6}{3})[/tex]
[tex]A' = (1,2)[/tex]
[tex]B' = \frac{1}{3} * B[/tex]
[tex]B' = \frac{1}{3} * (6,3)[/tex]
[tex]B' = (\frac{6}{3},\frac{3}{3})[/tex]
[tex]B'=(2,1)[/tex]
[tex]C' = \frac{1}{3} * C[/tex]
[tex]C' = \frac{1}{3} * (9,9)[/tex]
[tex]C' = (\frac{9}{3},\frac{9}{3})[/tex]
[tex]C' =(3,3)[/tex]