Respuesta :

Answer:

[tex]AC = 20[/tex]

Step-by-step explanation:

Given

[tex]AC = 2x + 8[/tex]

[tex]AB = 4x - 16[/tex]

[tex]BC = 3x - 6[/tex]

Required

Find AC

First, we need to solve for x

Since B is between A and C, then

[tex]AC = AB + BC[/tex]

Substitute values for AC, AB and BC

[tex]2x + 8 = 4x - 16 + 3x - 6[/tex]

Collect Like Terms

[tex]2x - 4x - 3x = -16 - 6 - 8[/tex]

[tex]-5x = -30[/tex]

Divide through by -5

[tex]\frac{-5x}{-5} = \frac{-30}{-5}[/tex]

[tex]x = \frac{-30}{-5}[/tex]

[tex]x = 6[/tex]

Substitute 6 for x in [tex]AC = 2x + 8[/tex]

[tex]AC= 2 * 6 + 8[/tex]

[tex]AC= 12 + 8[/tex]

[tex]AC = 20[/tex]