Given the function defined in the table below, find the average rate of
change, in simplest form, of the function over the interval
20 < x < 65.

Given the function defined in the table below find the average rate of change in simplest form of the function over the interval 20 lt x lt 65 class=

Respuesta :

Answer:

Average rate of change = [tex]\frac{2}{5}[/tex]

Step-by-step explanation:

Average rate of change of a function 'f' in the interval a ≤ x ≤ b is given by,

Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

We have to find the average rate of change in the interval 20 ≤ x ≤ 65

From the table attached,

f(65) = 32

f(20) = 14

Average rate of change = [tex]\frac{32-14}{65-20}[/tex]

                                        = [tex]\frac{18}{45}[/tex]

                                        = [tex]\frac{2}{5}[/tex]

Therefore, average rate of change in the given interval is [tex]\frac{2}{5}[/tex] .