Respuesta :

Hey There!

_____________________________________

Answer:

_____________________________________

DATA:

Angle of projection = θ(theta) = [tex]30^0[/tex]

Initial Velocity = [tex]V_0[/tex] = [tex]2x10^3[/tex]

Acceleration due to gravity = g = 9.8 m/s^2

Vertical Velocity = [tex]V_Y[/tex] = ?

Horizontal Velocity = [tex]V_X[/tex] = ?

Range of the Shell = R = ?

Maximum Height = H = ?

_____________________________________

SOLUTION:

Vertical Velocity is given by,

                                 [tex]V_Y = V_0Cos[/tex]θ

                                 [tex]V_Y = (2x10^3)xCos(30)[/tex]

                                 [tex]V_Y = (2x10)^3x(0.866)\\\\V_Y = 1732.05 \frac{m}{s}[/tex]

Horizontal Velocity is given by,

                                 [tex]V_X = V_0Sin[/tex]θ

                                 [tex]V_X = (2x10^3)xSin(30)\\\\V_X = (2000)x(0.5)\\\\V_X = 1000\frac{m}{s}[/tex]

Range is given by,

                                R =   [tex]\frac{V_0^2}{g}[/tex]  Sin2θ        

                                [tex]R = \frac{(2x10^3)^2}{10} x Sin(60)\\\\R = \frac{4x10^6}{10} x 0.866\\\\R= (4x10^5) x 0.866\\\\R = 346410.16 m[/tex]                    

Horizontal Velocity is given by,

                                [tex]H = \frac{V_0^2Sin^2(theta)}{2g}\\\\\\H= \frac{(2x10^3)^2xSin(30)^2}{2x10}\\\\\\H= \frac{(4x10^6)x(0.25)}{20} \\\\H = 50000 m[/tex]                             _____________________________________

Best Regards,

'Borz'