Answer:
The Volume of cylinder is: [tex]\mathbf{Volume=2\pi x^3-5\pi x^2-24\pi x+63\pi }[/tex]
Option B is correct option.
Step-by-step explanation:
We are given:
Volume of cylinder = h = 2x+7
Radius of cylinder = r = x-3
We need to find volume of cylinder
The formula used is: [tex]Volume=\pi r^2h[/tex]
Putting values and finding volume
[tex]Volume=\pi r^2h\\Volume=\pi (x-3)^2(2x+7)\\Volume=\pi (x^2-6x+9)(2x+7)\\Volume=\pi (2x(x^2-6x+9)+7(x^2-6x+9))\\Volume=\pi (2x^3-12x^2+18x+7x^2-42x+63)\\Volume=\pi (2x^3-12x^2+7x^2-42x+18x+63)\\Volume=\pi (2x^3-5x^2-24x+63)\\Volume=2\pi x^3-5\pi x^2-24\pi x+63\pi \\[/tex]
So, The Volume of cylinder is: [tex]\mathbf{Volume=2\pi x^3-5\pi x^2-24\pi x+63\pi }[/tex]
Option B is correct option.