Respuesta :

Answer:

[tex]\boxed{3x + 4y - 7 = 0}[/tex]

.

Step-by-step explanation:

First step, find the slope of the line

[tex]\boxed{\boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }}[/tex]

Where

  • m is a slope.
  • [tex](x_1,~y_1)[/tex] and [tex](x_2,~y_2)[/tex] are point of the line.

So

[tex]m = \frac{4 - (-2)}{-3 - 5}[/tex]

[tex]m = \frac{4 + 2}{-8}[/tex]

[tex]m = \frac{6}{-8}[/tex]

[tex]m = - \frac{3}{4}[/tex]

Next step, find the equation

[tex]\boxed{\boxed{y - y_1 = m(x - x_1)}}[/tex]

So

[tex]y - (-2) = -\frac{3}{4}(x - 5)[/tex]

[tex]y + 2 = -\frac{3}{4}(x - 5)[/tex]

[tex]4(y + 2) = -3(x - 5)[/tex]

[tex]4y + 8 = -3x + 15[/tex]

[tex]3x + 4y + 8 - 15 = 0[/tex]

[tex]3x + 4y - 7 = 0[/tex]

.

Happy to help :)