Respuesta :

Given:

The arithmetic sequence is

[tex]\dfrac{1}{2},1,1\dfrac{1}{2},2[/tex]

To find:

The nth term of the given arithmetic sequence and then find [tex]a_{10}[/tex].

Solution:

We have,

[tex]\dfrac{1}{2},1,1\dfrac{1}{2},2[/tex]

Here,

First term: [tex]a=\dfrac{1}{2}[/tex]

Common difference: [tex]d=1-\dfrac{1}{2}=\dfrac{1}{2}[/tex]

nth term of an arithmetic sequence is

[tex]a_n=a+(n-1)d[/tex]

where, a is first term and d is common difference.

[tex]a_n=\dfrac{1}{2}+(n-1)\dfrac{1}{2}[/tex]

[tex]a_n=\dfrac{1}{2}+\dfrac{1}{2}n-\dfrac{1}{2}[/tex]

[tex]a_n=\dfrac{1}{2}n[/tex]

Now, put n=10, to find [tex]a_{10}[/tex].

[tex]a_{10}=\dfrac{1}{2}(10)[/tex]

[tex]a_{10}=5[/tex]

Therefore, the nth term of the given arithmetic sequence is [tex]a_n=\dfrac{1}{2}n[/tex] and the value of [tex]a_{10}[/tex] is 5.