Respuesta :
Answer:
The location of the center of gravity of the fourth mass is [tex]\vec r_{4} = (-0.961\,m,-0.779\,m)[/tex].
Explanation:
Vectorially speaking, the center of gravity with respect to origin ([tex]\vec r_{cg}[/tex]), measured in meters, is defined by the following formula:
[tex]\vec r_{cg} = \frac{m_{1}\cdot \vec r_{1}+m_{2}\cdot \vec r_{2}+m_{3}\cdot \vec r_{3}+m_{4}\cdot \vec r_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}[/tex] (1)
Where:
[tex]m_{1}[/tex], [tex]m_{2}[/tex], [tex]m_{3}[/tex], [tex]m_{4}[/tex] - Masses of the objects, measured in kilograms.
[tex]\vec r_{1}[/tex], [tex]\vec r_{2}[/tex], [tex]\vec r_{3}[/tex], [tex]\vec r_{4}[/tex] - Location of the center of mass of each object with respect to origin, measured in meters.
If we know that [tex]\vec r_{cg} = (0,0)\,[m][/tex], [tex]\vec r_{1} = (0,0)\,[m][/tex], [tex]\vec r_{2} = (0, 4.1)\,[m][/tex], [tex]\vec r_{3} = (1.9,0.0)\,[m][/tex], [tex]m_{1} = 6\,kg[/tex], [tex]m_{2} = 1.5\,kg[/tex], [tex]m_{3} = 4\,kg[/tex] and [tex]m_{4} = 7.9\,kg[/tex], then the equation is reduced into this:
[tex](0,0) = \frac{(6\,kg)\cdot (0,0)\,[m]+(1.5\,kg)\cdot (0,4.1)\,[m]+(4.0\,kg)\cdot (1.9,0)\,[m]+(7.9\,kg)\cdot \vec r_{4}}{6\,kg+1.5\,kg+4\,kg+7.9\,kg}[/tex]
[tex](6\,kg)\cdot (0,0)\,[m]+(1.5\,kg)\cdot (0,4.1)\,[m]+(4\,kg)\cdot (1.9,0)\,[m]+(7.9\,kg)\cdot \vec r_{4} = (0,0)\,[kg\cdot m][/tex]
[tex](7.9\,kg)\cdot \vec r_{4} = -(6\,kg)\cdot (0,0)\,[m]-(1.5\,kg)\cdot (0,4.1)\,[m]-(4\,kg)\cdot (1.9,0)\,[m][/tex]
[tex]\vec r_{4} = -0.759\cdot (0,0)\,[m]-0.190\cdot (0,4.1)\,[m]-0.506\cdot (1.9,0)\,[m][/tex]
[tex]\vec r_{4} = (0, 0)\,[m] -(0, 0.779)\,[m]-(0.961,0)\,[m][/tex]
[tex]\vec r_{4} = (-0.961\,m,-0.779\,m)[/tex]
The location of the center of gravity of the fourth mass is [tex]\vec r_{4} = (-0.961\,m,-0.779\,m)[/tex].