Respuesta :

QUESTION:

What is the solution to -3/4x + 2 is less then or equal to -7

ANSWER:

[tex]\green{{x ≥ 12}}[/tex]

STEP-BY-STEP EXPLANATION:

First, Simplify each term

Combine [tex]{x}[/tex] and [tex]{\frac{3}{4}}[/tex]

[tex]\green{{-\frac{x × 3}{4} + 2 ≤ - 7}}[/tex]

Move 3 to the left of [tex]{x}[/tex]

[tex]\green{{-\frac{3x}{4} + 2 ≤ - 7}}[/tex]

Second, Move all terms not containing [tex]{x}[/tex] to the right side of the inequality

Subtract 2 from the both sides of the inequality

[tex]\green{{-\frac{3x}{4} ≤ - 7 - 2}}[/tex]

Subtract 2 from - 7

[tex]\green{{-\frac{3x}{4} ≤ - 9}}[/tex]

Third, Multiply each term in [tex]{-\frac{3x}{4} ≤ - 9 by - 1}[/tex]

When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign

[tex]\green{{-\frac{3x}{4} × - 1 ≥ ( - 9) × - 1}}[/tex]

Fourth, Multiply [tex]{-\frac{3x}{4} × - 1}[/tex]

Multiply - 1 by - 1

[tex]\green{{1\frac{3x}{4} ≥ ( - 9) × - 1}}[/tex]

Multiply [tex]{\frac{3x}{4}}[/tex] by 1

[tex]\green{{\frac{3x}{4} ≥ ( - 9) × 1}}[/tex]

Multiply - 9 by - 1

[tex]\green{{\frac{3x}{4} ≥ 9}}[/tex]

Multiply both sides of the equation by 4

[tex]\green{{3x ≥ 9 × (4)}}[/tex]

Multiply 9 by 4

[tex]\green{{3x ≥ 36}}[/tex]

Fifth, Divide each term by 3 and simplify

Divide each term in [tex]{3x ≥ 36 by 3}[/tex]

[tex]\green{{\frac{3x}{3} ≥ \frac{36}{3}}}[/tex]

Sixth, Cancel the common factor of 3

Cancel the common factor

[tex]\red{{\frac{3x}{3}}}[/tex] ≥ [tex]\green{{\frac{36}{3}}}[/tex]

Divide [tex]{x}[/tex] by 1

[tex]\green{{x ≥ \frac{36}{3}}}[/tex]

Lastly, Divide 36 by 3

[tex]\green{\boxed{x ≥ 12}}[/tex]

hope it's helps