A rectangular storage container with an open top is to have a volume of 10 m^3. The length of its base is twice the width. Material for the base costs $6 per m^2. Material for the sides costs $0.8 per m^2.

Required:
Find the dimensions of the container which will minimize cost and the minimum cost.

Respuesta :

Answer:

The dimension that minimizes the container is width = 1; base = 2 and height = 5

The minimum cost is $36

Explanation:

Let the width be x

So:

[tex]Width = x[/tex]

[tex]Base = 2 * Width[/tex]

[tex]Base = 2 * x[/tex]

[tex]Base = 2x[/tex]

[tex]Height = h[/tex]

Volume of the box is:

[tex]Volume = 10m^3[/tex] ---- Given

Volume is calculated as:

[tex]Volume = Base * Width * Height[/tex]

[tex]Volume = 2x * x * h[/tex]

[tex]Volume = 2x^2h[/tex]

Substitute 10 for Volume

[tex]10 = 2x^2h[/tex]

Make h the subject

[tex]h = \frac{10}{2x^2}[/tex]

[tex]h = \frac{5}{x^2}[/tex]

Next, we calculate area of the sides.

[tex]Area = Base + Sides[/tex]

Because it has an open top, the area is:

[tex]Base\ Area = Base * Width[/tex]

[tex]Sides\ Area = 2[(Width * Height) + (Base * Height)][/tex]

[tex]Base\ Area = 2x * x[/tex]

[tex]Base\ Area = 2x^2[/tex]

[tex]Sides\ Area = 2[(Width * Height) + (Base * Height)][/tex]

[tex]Side\ Area = 2[(x * h) + (2x * h)][/tex]

[tex]Side\ Area = 2[(xh) + (2xh)][/tex]

[tex]Side\ Area = 2[3xh][/tex]

[tex]Side\ Area = 6xh[/tex]

The base area costs $6 per m²

So, the cost of 2x² would be:

[tex]Cost = 6 * 2x^2[/tex]

[tex]Cost = 12x^2[/tex]

The side cost area costs $0.8 per m²

So, 6xh would cost

[tex]Cost = 0.8 * 6xh[/tex]

[tex]Cost = 4.8xh[/tex]

Total Cost (C) is:

[tex]C = 12x^2 + 4.8xh[/tex]

Recall that [tex]h = \frac{5}{x^2}[/tex]

So:

[tex]C = 12x^2 + 4.8x *\frac{5}{x^2}[/tex]

[tex]C = 12x^2 + 4.8 *\frac{5}{x}[/tex]

[tex]C = 12x^2 + \frac{4.8 *5}{x}[/tex]

[tex]C = 12x^2 + \frac{24}{x}[/tex]

Take derivative of C

[tex]C^{-1} = 24x - \frac{24}{x^2}[/tex]

Take LCM

[tex]C^{-1} = \frac{24x^3 - 24}{x^2}[/tex]

Equate [tex]C^{-1}[/tex] to 0

[tex]0 = \frac{24x^3 - 24}{x^2}[/tex]

Cross multiply

[tex]24x^3 - 24 = 0 * x^2[/tex]

[tex]24x^3 - 24 = 0[/tex]

Add 24 to both sides

[tex]24x^3 = 24[/tex]

Divide through by 24

[tex]x^3 = 1[/tex]

Take cube roots of both sides

[tex]x = 1[/tex]

Recall that

[tex]Width = x[/tex]

[tex]Base = 2x[/tex]

[tex]Height = h[/tex] and [tex]h = \frac{5}{x^2}[/tex]

Solve for these dimensions:

[tex]Width = 1[/tex]

[tex]Base = 2 * 1[/tex]

[tex]Base = 2[/tex]

[tex]h = \frac{5}{1^2}[/tex]

[tex]h = \frac{5}{1}[/tex]

[tex]h = 5[/tex]

i.e.

[tex]Height = 5[/tex]

Hence, the dimension that minimizes the container is width = 1; base = 2 and height = 5

Recall that

[tex]C = 12x^2 + \frac{24}{x}[/tex]

Substitute 1 for x

[tex]C = 12(1^2) + \frac{24}{1}[/tex]

[tex]C = 12 + 24[/tex]

[tex]C = 36[/tex]

The minimum cost is $36