Answer:
The answer is "36.197%".
Explanation:
[tex]p = \$ 245,000 \\\\r= 3.125\% = 0.03125\\\\n=12 \\\\t= 25 \ years\\\\[/tex]
Formula for EMI
[tex]\to p \times \frac{r}{n} \times [\frac{(1+\frac{r}{n})^{nt}}{(1+\frac{r}{n})^{nt} -1}][/tex]
[tex]= 245,000 \times \frac{0.03125}{12} \times [\frac{(1+\frac{0.03125}{12})^{12 \times 25}}{(1+\frac{0.03125}{12})^{12 \times 25} -1}]\\\\= \$ 1177.81\\\\[/tex]
Formula for calculate balance after 10 years:
[tex]\to p \times (1+\frac{r}{n})^{nt} - EMI (\frac{(1+\frac{r}{n})^{nt} -1}{\frac{r}{n}})[/tex]
[tex]\to 245,000 \times (1+ \frac{0.03125}{12})^{10\times 12} - 1177.81 [\frac{(1+\frac{0.03125}{12})^{10\times 12} - 1}{ \frac{0.03125}{12}}]\\\\\to \$ 334739.43 - \$ 165,662.30\\\\\to \$ 169077.13[/tex]
Total amount after 10 years:
[tex]\to \$265000 -\$169077.13\\\\\to \$ 95922.87[/tex]
calculate rate:
[tex]= \frac{\$ 95922.87}{\$ 265,000} \times 100\\\\= 36.197 \%[/tex]