The rate of change of revenue (in dollars per calculator) from the sale of x calculators is R′(x)=(x+1)ln(x+1)R ′ (x)=(x+1)ln(x+1). Find the total revenue from the sale of the first 12 calculators. (Hint: In this exercise, it simplifies matters to write an antiderivative of x+1 as (x+8)2/2(x+8) 2 /2 rather than x2/2+x.)x 2 /2+x.)

Respuesta :

Answer:

Total revenue = [tex]\frac{169}{2}\ln(13)-\frac{169}{4}[/tex]  dollars

Step-by-step explanation:

[tex]R'(x)=(x+1)\ln(x+1)[/tex]

Integrate with respect to [tex]x[/tex].

[tex]R(x)=[/tex] ∫[tex](x+1)\ln(x+1)[/tex] dx

Take [tex]x+1=u[/tex]

Differentiate with respect to [tex]x[/tex]

[tex]dx=du[/tex]

So,

[tex]R(x)=[/tex] ∫[tex]u\ln(u)\,du[/tex]

Use integration by parts: ∫f g dx = f∫ g dx-∫(∫g dx)f' dx

Therefore,

[tex]R(x)=[/tex]  [tex]\frac{u^2}{2}\ln(u)[/tex] [tex]-[/tex]  ∫[tex]\frac{u^2}{2}\frac{1}{u}\,du[/tex]

=  [tex]\frac{u^2}{2}\ln(u)[/tex] [tex]-[/tex]  ∫[tex]\frac{u}{2}\,du[/tex]

Put [tex]u=x+1[/tex]

[tex]R(x)= \frac{(x+1)^2}{2}\ln(x+1)-\frac{(x+1)^2}{4}[/tex]

To find total revenue from the sale of the first 12 calculators, put [tex]x=12[/tex]

[tex]R(x)= \frac{(12+1)^2}{2}\ln(12+1)-\frac{(12+1)^2}{4}\\\\= \frac{(13)^2}{2}\ln(13)-\frac{(13)^2}{4}\\\\=\frac{169}{2}\ln(13)-\frac{169}{4}[/tex]

Total revenue = [tex]\frac{169}{2}\ln(13)-\frac{169}{4}[/tex]  dollars