The mean and standard deviation of the maximum loads supported by 60 cables are 11.09 tons and 0.73 tons, respectively. Find (a) 95%, (b) 99% confidence limits for the mean of the maximum loads ofall cables produced by the compan

Respuesta :

Answer:

The 95% confidence interval is  [tex] 10.91  <  \mu <11.28  [/tex]  

The 99% confidence interval is [tex] 10.85  <  \mu <11.33  [/tex]  

Step-by-step explanation:

From the question we are told that

    The sample  mean is  [tex]\= x = 11.09 \ tons[/tex]

     The standard deviation is  [tex]\sigma = 0.73 \ tons[/tex]

      The sample size is  n =60

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E = 1.96 *  \frac{ 0.73  }{\sqrt{n60 }[/tex]    

=>    [tex]E = 0.1847 [/tex]  

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>    [tex] 11.09  - 0.1847  <  \mu <11.09  + 0.1847 [/tex]  

=>    [tex] 10.91  <  \mu <11.28   [/tex]  

From the question we are told the confidence level is  99% , hence the level of significance is    

      [tex]\alpha = (100 - 99 ) \%[/tex]

=>   [tex]\alpha = 0.01/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  2.58 [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E = 2.58 *  \frac{ 0.73  }{\sqrt{n60 }[/tex]    

=>    [tex]E = 0.2431 [/tex]  

Generally 95% confidence interval is mathematically represented as  

      [tex]\= x -E <  \mu <  \=x  +E[/tex]

=>    [tex] 11.09  - 0.2431<  \mu <11.09  + 0.2431 [/tex]  

=>    [tex] 10.85  <  \mu <11.33  [/tex]  

   

The confidence limits for the mean of the maximum loads of all cables produced by the company are: for 95%, it is [10.935,11.245]. For 99%, it is [10.87 ,11.309].

What is the margin of error for large samples?

Suppose that we have:

  • Sample size n > 30
  • Sample standard deviation = s
  • Population standard deviation = [tex]\sigma[/tex]
  • Level of significance = [tex]\alpha[/tex]

Then the margin of error(MOE) is obtained as

  • Case 1: Population standard deviation is known

Margin of Error = [tex]MOE = Z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

  • Case 2: Population standard deviation is unknown

[tex]MOE = Z_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

where [tex]Z_{\alpha/2}[/tex] is critical value of the test statistic at level of significance

The confidence interval for specific level of significance [tex]\alpha[/tex] is:

[tex][\overline{x} - |MOE|, \overline{x} + |MOE|][/tex]

where [tex]\overline{x}[/tex] is the sample mean.

For this case, we are given that:

  • Sample size = n = 60
  • Sample mean = [tex]\overline{x}[/tex] = 11.09 tons
  • Sample standard deviation = s = 0.73 tons

Calculating the confidence limits of given confidence level:

  • Case 1: Confidence interval of 95%

The level of significance = [tex]\alpha = 100 - 95\% = 5\% = 0.05[/tex]

The critical value of Z at this level of significance is [tex]Z_{\alpha/2} = Z_{0.05/2} = \pm 1.645[/tex]

Thus, the confidence interval is:

[tex][\overline{x} - |MOE|, \overline{x} + |MOE|] = [11.09 - 1.645 \times \dfrac{0.73}{\sqrt{60}}, 11.09 + 1.645 \times \dfrac{0.73}{\sqrt{60}}]\\\\\approx [11.09 - 0.155, 11.09 + 0.155] = [10.935,11.245][/tex]

Thus, the confidence interval at 95% is  [10.935,11.245]

  • Case 2: Confidence interval of 99%

The level of significance = [tex]\alpha = 100 - 99\% = 1\% = 0.01[/tex]

The critical value of Z at this level of significance is [tex]Z_{\alpha/2} = Z_{0.05/2} \approx \pm 2.33[/tex]

Thus, the confidence interval is:

[tex][\overline{x} - |MOE|, \overline{x} + |MOE|] = [11.09 - 2.33 \times \dfrac{0.73}{\sqrt{60}}, 11.09 + 2.33 \times \dfrac{0.73}{\sqrt{60}}]\\\\\approx [11.09 - 0.1847, 11.09 + 0.1847] = [10.87 ,11.31][/tex]

Thus, the confidence interval at 99% is  [10.87 ,11.309]

Thus, the confidence limits for the mean of the maximum loads of all cables produced by the company are: for 95%, it is [10.935,11.245]. For 99%, it is  [10.87 ,11.309].

Learn more about confidence interval for large samples here:

https://brainly.com/question/13770164