Respuesta :

looking at the vertex and the parabola opening we can see that all real numbers are equal to or greater then -1

Answer:

[tex]y\geq -1[/tex]

All real numbers greater than or equal to [tex]-1[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]f(x)=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex of the parabola

if [tex]a> 0[/tex] ----> the parabola open upward ( vertex is a minimum)

if [tex]a< 0[/tex] ----> the parabola open downward ( vertex is a maximum)

In this problem we have

[tex]f(x)=(x-4)(x-2)[/tex]

Convert to vertex form

[tex]f(x)=(x-4)(x-2)=x^{2} -2x-4x+8\\f(x)=x^{2}-6x+8[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-8=x^{2}-6x[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]f(x)-8+9=x^{2}-6x+9[/tex]

[tex]f(x)+1=x^{2}-6x+9[/tex]

Rewrite as perfect squares

[tex]f(x)+1=(x-3)^{2}[/tex]

[tex]f(x)=(x-3)^{2}-1[/tex] -------> equation in vertex form

The vertex is the point [tex](3,-1)[/tex]

[tex]a=1[/tex]

therefore

[tex]a> 0[/tex] ----> the parabola open upward ( vertex is a minimum)

The range of the function is the interval-------> [-1,∞)

[tex]y\geq -1[/tex]

All real numbers greater than or equal to [tex]-1[/tex]

see the attached figure to better understand the problem

Ver imagen calculista