Respuesta :

Answer:

4:

a.) 49x^2-36y^2

b.) 9a^2-25b^2

c.) 1/25x^2-49

5: b.) -5x^2-4xy+4y^2

Step-by-step explanation:

Answers:

4a.) [tex]49x^2-36y^2[/tex]

4b.) [tex]9a^2-25b^2[/tex]

4c.) [tex]\frac{1}{25}x^2-49[/tex]

5b.) [tex]4y^2-4xy-5x^2[/tex]

Solution Steps:

__________________________________

4a.) [tex]\bold{(7x-6y)(7x+6y)}[/tex]:

 - Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].

- So change the equation using the rule:

  • [tex](7x)^2-(6y)^2[/tex]

- Expand [tex](7x)^2[/tex] and [tex](6y)^2[/tex]:

  • [tex](7x)^2=7^2x^2[/tex]
  • [tex](6y)^2=6^2y^2[/tex]

- Calculate [tex]7^2[/tex] and [tex]6^2[/tex]:

  • [tex]7^2=49[/tex]
  • [tex]6^2=36[/tex]

So the end equation would be: [tex]49x^2-36y^2[/tex].

4b.) [tex]\bold{(3a+5b)(3a-5b)}[/tex]:

- Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].

- So change the equation using the rule:

  • [tex](3a)^2-(5b)^2[/tex]

- Expand [tex](3a)^2[/tex] and [tex](5b)^2[/tex] :

  • [tex](3a)^2=3^2a^2[/tex]
  • [tex](5b)^2=5^2b^2[/tex]

- Calculate [tex]3^2[/tex] and [tex]5^2[/tex]:

  • [tex]3^2=9[/tex]
  • [tex]5^2=25[/tex]

So the end equation would be: [tex]9a^2-25b^2[/tex].

4c.) [tex]\bold{(\frac{1}{5}x-7)}[/tex] × [tex]\bold{(\frac{1}{5}+7)}[/tex]:

- Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].

- So change the equation using the rule:

  • [tex](\frac{1}{5}x)^2-7^2[/tex]

- Expand [tex](\frac{1}{5}x)^2[/tex]:

  • [tex](\frac{1}{5})^2x^2[/tex]

- Calculate [tex](\frac{1}{5})^2[/tex] and [tex]7^2[/tex] :

  • [tex](\frac{1}{5})^2=\frac{1}{25}[/tex]
  • [tex]7^2=49[/tex]

So the end equation would be: [tex]\frac{1}{25}x^2-49[/tex].

5b.) [tex]\bold{(4x-y)(4x+y)+(2x-y)^2-(5x+2y)(5x-2y)}[/tex]:

- Consider [tex](4x-y)(4x+y)[/tex]. Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].

- So change the equation using the rule:

  • [tex](4x)^2-y^2[/tex]

- Expand [tex](4x)^2[/tex]:

  • [tex](4x)^2=4^2x^2[/tex]

- Calculate [tex]4^2[/tex]:

  • [tex]4^2=16[/tex]

- Use binomial theorem [tex](a-b)^2=a^2-2ab+b^2[/tex] to expand [tex](2x-y)^2[/tex]:

  • [tex]4x^2-4xy+y^2[/tex]

- Combine [tex]-y^2[/tex] and [tex]y^2[/tex]:

  • [tex]-y^2+y^2=0[/tex]

- Consider [tex](5x+2y)(5x-2y)[/tex]. Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].

So change the equation using the rule:

  • [tex](5x)^2-(2y)^2[/tex]

- Expand [tex](5x)^2[/tex] and [tex](2y)^2[/tex]:

  • [tex](5x)^2=5^2x^2[/tex]
  • [tex](2y)^2=2^2y^2[/tex]

- Calculate [tex]5^2[/tex] and [tex]2^2[/tex]:

  • [tex]5^2=25[/tex]
  • [tex]2^2=4[/tex]

- Combine [tex]20x^2[/tex] and [tex]-25x^2[/tex]:

  • [tex]20x^2+(-25x^2)=-5x^2[/tex]

So the end equation would be: [tex]4y^2-4xy-5x^2[/tex].

__________________________________