Please help me with 4/a, b, c and 5/b

Answer:
4:
a.) 49x^2-36y^2
b.) 9a^2-25b^2
c.) 1/25x^2-49
5: b.) -5x^2-4xy+4y^2
Step-by-step explanation:
__________________________________
- Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].
- So change the equation using the rule:
- Expand [tex](7x)^2[/tex] and [tex](6y)^2[/tex]:
- Calculate [tex]7^2[/tex] and [tex]6^2[/tex]:
So the end equation would be: [tex]49x^2-36y^2[/tex].
- Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].
- So change the equation using the rule:
- Expand [tex](3a)^2[/tex] and [tex](5b)^2[/tex] :
- Calculate [tex]3^2[/tex] and [tex]5^2[/tex]:
So the end equation would be: [tex]9a^2-25b^2[/tex].
- Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].
- So change the equation using the rule:
- Expand [tex](\frac{1}{5}x)^2[/tex]:
- Calculate [tex](\frac{1}{5})^2[/tex] and [tex]7^2[/tex] :
So the end equation would be: [tex]\frac{1}{25}x^2-49[/tex].
- Consider [tex](4x-y)(4x+y)[/tex]. Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].
- So change the equation using the rule:
- Expand [tex](4x)^2[/tex]:
- Calculate [tex]4^2[/tex]:
- Use binomial theorem [tex](a-b)^2=a^2-2ab+b^2[/tex] to expand [tex](2x-y)^2[/tex]:
- Combine [tex]-y^2[/tex] and [tex]y^2[/tex]:
- Consider [tex](5x+2y)(5x-2y)[/tex]. Multiplication can be transformed into difference of squares using the rule: [tex](a-b)(a+b)=a^2-b^2[/tex].
So change the equation using the rule:
- Expand [tex](5x)^2[/tex] and [tex](2y)^2[/tex]:
- Calculate [tex]5^2[/tex] and [tex]2^2[/tex]:
- Combine [tex]20x^2[/tex] and [tex]-25x^2[/tex]:
So the end equation would be: [tex]4y^2-4xy-5x^2[/tex].
__________________________________