Respuesta :

Answer:

[tex]\boxed{m = - \frac{33}{14} }[/tex]

.

Step-by-step explanation:

Use the form below

[tex]\boxed{\boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }}[/tex]

Where

  • [tex]m[/tex] is a slope
  • [tex](x_1,~y_1)[/tex] and [tex](x_2,~y_2)[/tex] are the point of the line

.

So, the slope is

[tex](\frac{1}{3} ,~ -1) \to x_1 = \frac{1}{3} ~and~y_1 = -1[/tex]

[tex](-2,~ \frac{9}{2} ) \to x_2 = -2~and~y_2 = \frac{9}{2}[/tex]

.

[tex]m = \frac{\frac{9}{2} -(-1)}{-2-\frac{1}{3} }[/tex]

[tex]m = \frac{\frac{11}{2} }{\frac{-7}{3} }[/tex]

[tex]m = \frac{11}{2} \div (-\frac{7}{3} )[/tex]

[tex]m = \frac{11}{2} \times (-\frac{3}{7} )[/tex]

[tex]m = - \frac{33}{14}[/tex]

.

Happy to help:)

Answer:

bsbsh

Step-by-step explanation:

u2uwj wwjwj ejwnw ejwnw ejwjw ejwbe ejeje eje eje eeje ehe eje ejw ehe ejwbehe ejw ejw ejw ehe ebe e