Respuesta :
Answer:
[tex]\boxed{m = - \frac{33}{14} }[/tex]
.
Step-by-step explanation:
Use the form below
[tex]\boxed{\boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }}[/tex]
Where
- [tex]m[/tex] is a slope
- [tex](x_1,~y_1)[/tex] and [tex](x_2,~y_2)[/tex] are the point of the line
.
So, the slope is
[tex](\frac{1}{3} ,~ -1) \to x_1 = \frac{1}{3} ~and~y_1 = -1[/tex]
[tex](-2,~ \frac{9}{2} ) \to x_2 = -2~and~y_2 = \frac{9}{2}[/tex]
.
[tex]m = \frac{\frac{9}{2} -(-1)}{-2-\frac{1}{3} }[/tex]
[tex]m = \frac{\frac{11}{2} }{\frac{-7}{3} }[/tex]
[tex]m = \frac{11}{2} \div (-\frac{7}{3} )[/tex]
[tex]m = \frac{11}{2} \times (-\frac{3}{7} )[/tex]
[tex]m = - \frac{33}{14}[/tex]
.
Happy to help:)
Answer:
bsbsh
Step-by-step explanation:
u2uwj wwjwj ejwnw ejwnw ejwjw ejwbe ejeje eje eje eeje ehe eje ejw ehe ejwbehe ejw ejw ejw ehe ebe e