Answer:
w = 4028
Step-by-step explanation:
Solve for y
[tex]y+1 = 2015[/tex]
[tex]y=2014[/tex]
Substitute 2014 for y then solve for w
[tex]2\left(2014\right)^{2}+2\left(2014\right)=2015w[/tex]
[tex]w=\ \frac{\left(2\left(2014\right)^{2}+2\left(2014\right)\right)}{2015}[/tex]
[tex]w=4028[/tex]
Therefore, w must be 4028