Respuesta :

Answer:

See below

Step-by-step explanation:

[tex] In\: \triangle AKL, \:\\ AK = 9,\: \\m\angle K = 90\degree, \: \\m\angle A= 60\degree \\

\therefore m\angle L = 30\degree\\

By \:30°-60°-90° \:\triangle \:theorem:\\

AK = \frac{1}{2} \times AL\\(SIDE\: OPPOSITE \:TO \:30\degree) \\\\

9 = \frac{1}{2} \times AL\\\\

AL = 9\times 2\\\\

\huge\red{AL = 18}\\\\

KL = \frac{\sqrt 3}{2} \times AL\\(SIDE\: OPPOSITE \:TO \:60\degree) \\\\

KL = \frac{\sqrt 3}{2}\times 18\\\\

KL = 9\times \sqrt 3\\\\

\huge\purple{KL = 9\sqrt 3}\\\\

P(\triangle AKL) = AK + KL + AL\\

P(\triangle AKL)= 9 + 9\sqrt 3+18\\

\huge\orange{P(\triangle AKL)=(27 + 9\sqrt 3) \: units} \\\\

A(\triangle AKL) = \frac{1}{2} \times KL\times AK\\

A(\triangle AKL) = \frac{1}{2} \times 9\sqrt 3\times 9\\

A(\triangle AKL) = \frac{81\sqrt 3}{2} \\

\huge\pink{A(\triangle AKL) = 40.5\sqrt 3\: units^2} [/tex]