What is the value of x? There is isosceles triangle. The measure of angle which is between two congruent sides is (6x+10⁰). The measures of other angles are (x+17⁰) and (4x-34⁰).

Respuesta :

Answer:-

x=17

step-by-step Explanation:-

[tex]{\boxed{\quad\:\mapsto\rm Firstly\:Let's\:understand\:the\:concept:-}}[/tex]

This is a isosceles triangle. As it is a triangle we can apply sum theory. we have to take the sum of given unknown polynomials as 180° .Then by solving it we can find the value of x.

Solution:-

Given angles

  • (6x+10°)
  • (x+17°)
  • (4x-34)°

According to sum theory

[tex]{\boxed{\sf The \:sum\:of\:angles=180°}}[/tex]

  • Substitute the values

[tex]\qquad \quad{:}\longmapsto\tt (6x+10)+(x+17)+(4x-34)=180 [/tex]

  • Remove brackets

[tex]\qquad \quad{:}\longmapsto\tt 6x+10+x+17+4x-34=180 [/tex]

  • Together like polynomials and constants

[tex]\qquad \quad{:}\longmapsto\tt 6x+x+4x+10+17-34=180 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt 11x-7=180 [/tex]

  • Interchange sides

[tex]\qquad \quad{:}\longmapsto\tt 11x=180+7 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt 11x=187 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt x=\cancel{\dfrac{187}{11}}[/tex]

  • Simplify

[tex]\qquad \quad{:}\longmapsto\tt x=17[/tex]

[tex]\therefore\sf The \:value\:of\:x\;is\:17.[/tex]