x=17
[tex]{\boxed{\quad\:\mapsto\rm Firstly\:Let's\:understand\:the\:concept:-}}[/tex]
This is a isosceles triangle. As it is a triangle we can apply sum theory. we have to take the sum of given unknown polynomials as 180° .Then by solving it we can find the value of x.
Given angles
According to sum theory
[tex]{\boxed{\sf The \:sum\:of\:angles=180°}}[/tex]
[tex]\qquad \quad{:}\longmapsto\tt (6x+10)+(x+17)+(4x-34)=180 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt 6x+10+x+17+4x-34=180 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt 6x+x+4x+10+17-34=180 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt 11x-7=180 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt 11x=180+7 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt 11x=187 [/tex]
[tex]\qquad \quad{:}\longmapsto\tt x=\cancel{\dfrac{187}{11}}[/tex]
[tex]\qquad \quad{:}\longmapsto\tt x=17[/tex]
[tex]\therefore\sf The \:value\:of\:x\;is\:17.[/tex]