Respuesta :

Answer:

Here given that perimeter of circular running track =330m

Let radius=r

As we know that in a circle

[tex]{\boxed{\sf Perimeter=2\pi r}}[/tex]

  • Substitute the values

[tex]\qquad \quad{:}\longmapsto\tt 2\times\dfrac {22}{7}×r=330 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt \dfrac {44}{7}r=330 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt r=\dfrac {330×7 }{44}[/tex]

[tex]\qquad \quad{:}\longmapsto\tt r=\dfrac{2310}{44}[/tex]

[tex]\qquad \quad{:}\longmapsto\tt r=52.5 [/tex]

[tex]\therefore\sf r=53m (Approx)[/tex]

Again

[tex]{\boxed{\sf Area=\pi r^2 }}[/tex]

  • Substitute the values

[tex]\qquad \quad{:}\longmapsto\tt Area=\dfrac{22}{7}×(53)^2 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt Area=8828.2m^2 [/tex]

[tex]\therefore\sf Area=8828m^2 (Approx)[/tex]

Now

the radius is increased by 7m

Hence

New radius=(x+7)m=53+7=60m

New Area=

[tex]\qquad \quad{:}\longmapsto\tt \pi. r^2 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt \dfrac {22}{7}(60)^2 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt \dfrac {22}{7}×3600 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt 11314.28m^2 [/tex]

[tex]\therefore\sf AREA=11314m^2 (Approx).[/tex]

now

Area of widened Area=New area-Old Area

[tex]\qquad \quad{:}\longmapsto\tt 11314-8828 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt 2486m^2 [/tex]

  • Cost of widening per square=8

Total cost=

[tex]\qquad \quad{:}\longmapsto\tt 2486×8 [/tex]

[tex]\qquad \quad{:}\longmapsto\tt 19888[/tex]

[tex]\therefore\sf Total\:cost\:is\: 19888.[/tex]

Can't understand the attachment?

Here is a latex diagram for your question.

[tex]\Huge\downarrow [/tex]

[tex]\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(1.2,0)(1.121,1.121)(0,1.2)\qbezier(1.2,0)(1.121,-1.121)(0,-1.2)\qbezier(0,-1.2)(-1.121,-1.121)(-1.2,0)\qbezier(-1.2,0)(-1.121,1.121)(0,1.2)\put(-0,0){\vector(-1,0){2.3}}\put(0,0){\vector(0,1){1.2}}\put(-1.7,0.2){$\bf (x+7)m$}\put(0.2,0.3){$\bf x m$}\end{picture}[/tex]

Ver imagen Аноним