Respuesta :

Answer:

cosФ is [tex]-\frac{\sqrt{7}}{4}[/tex]  ⇒ B

Step-by-step explanation:

Let us solve the question using one of the identities of trigonometry

sin²Ф + cos²Ф = 1

∵ sinФ = [tex]\frac{3}{4}[/tex]

→ Substitute it in the rule above to find cos Ф

∴ ([tex]\frac{3}{4}[/tex])² + cosФ² = 1

∴ [tex]\frac{9}{16}[/tex] + cosФ² = 1

→ Subtract [tex]\frac{9}{16}[/tex]  from both sides

∴ cos²Ф = [tex]\frac{7}{16}[/tex]

→ Take √ for both sides

cosФ = ± [tex]\frac{\sqrt{7}}{4}[/tex]

∵ Angle Ф lies on the second quadrant

∴ cosФ is a negative value

∴ cosФ = [tex]-\frac{\sqrt{7}}{4}[/tex]  

cosФ is [tex]-\frac{\sqrt{7}}{4}[/tex]