Respuesta :

Answer:

The 10th term of the sequence is:

  • [tex]a_{10}=\frac{1}{27}[/tex]

Step-by-step explanation:

Given the number

729, 243, 81, 27...

A geometric sequence has a constant ratio 'r' and is defined by

[tex]a_n=a_0\cdot r^{n-1}[/tex]

Computing the ratio of all the adjacent terms

[tex]\frac{243}{729}=\frac{1}{3},\:\quad \frac{81}{243}=\frac{1}{3},\:\quad \frac{27}{81}=\frac{1}{3}[/tex]

The ratio of all the adjacent terms is the same and equal to

[tex]r=\frac{1}{3}[/tex]

also

[tex]a_1=729[/tex]

Therefore, the nth term is computed by:

[tex]a_n=729\left(\frac{1}{3}\right)^{n-1}[/tex]

Putting n = 10 to find the 10th term

[tex]a_{10}=729\left(\frac{1}{3}\right)^{10-1}[/tex]

     [tex]=729\cdot \frac{1}{3^9}[/tex]

      [tex]=\frac{1\cdot \:729}{3^9}[/tex]

      [tex]=\frac{729}{3^9}[/tex]

      [tex]=\frac{3^6}{3^9}[/tex]

      [tex]=\frac{1}{3^3}[/tex]

[tex]a_{10}=\frac{1}{27}[/tex]

Therefore, the 10th term of the sequence is:

  • [tex]a_{10}=\frac{1}{27}[/tex]