Respuesta :

Answer:

[tex]5\sqrt{5}\left(ab\right)^{\frac{3}{2}}=\sqrt{\left(5ab\right)^3}[/tex]

Step-by-step explanation:

Let us consider the expression

[tex]5\sqrt{5}\left(ab\right)^{\frac{3}{2}}[/tex]

Writing the expression as a radical

But, let us revise some rules:

[tex]\sqrt{a}=a^{\frac{1}{2}}[/tex]

[tex]\left(a^b\right)^c=a^{bc},\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

[tex]\left(a\cdot \:b\right)^n=a^nb^n[/tex]

let us solve now

[tex]5\sqrt{5}\left(ab\right)^{\frac{3}{2}}[/tex]

[tex]=5^{\frac{3}{2}}\left(ab\right)^{\frac{3}{2}}[/tex]         ∵  [tex]\:5^{\frac{3}{2}}=5\sqrt{5}[/tex]

[tex]=\left(5ab\right)^{\frac{3}{2}}[/tex]

[tex]=\left(5ab\right)^{3\cdot \frac{1}{2}}[/tex]

[tex]=\left(\left(5ab\right)^3\right)^{\frac{1}{2}}[/tex]

[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}[/tex]

[tex]=\sqrt{\left(5ab\right)^3}[/tex]

Thus,

[tex]5\sqrt{5}\left(ab\right)^{\frac{3}{2}}=\sqrt{\left(5ab\right)^3}[/tex]