From A to Z BU
9 Love From A to Z
9 Love From A to Z
20
The
equation d = n²-12n + 43
models the number of defective
items d
produced in a manufacturing process where there
workers in a restricted
are n
area
a) solve for
When
do 30
I
b) solve for n
when
d=20

Respuesta :

Answer:

a) we get value of n: n=10.7 or n=1.2 when d=30

b) we get value of n: n=9.6 or n=2.3 when d=20

Step-by-step explanation:

a) solve for  n When  do= 30

Put d= 30 in the given equation:

[tex]d = n^2-12n + 43[/tex]

[tex]30=n^2-12n+43\\n^2-12n+43-30=0\\n^2-12n+13=0\\[/tex]

Now, we will find value of n by using quadratic formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

We have a=1, b=-12 and c=13

[tex]n=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\n=\frac{-(-12)\pm\sqrt{(-12)^2-4(1)(13)}}{2(1)}\\n=\frac{12\pm\sqrt{144-52}}{2}\\n=\frac{12\pm\sqrt{92}}{2}\\n=\frac{12\pm9.59}{2}\\n=\frac{12+9.59}{2} , n=\frac{12-9.59}{2}\\n=10.7 , n=1.2\\[/tex]

So, we get value of n: n=10.7 or n=1.2

b) solve for n  when  d=20

[tex]d=n^2-12n+43\\20=n^2-12n+43\\n^2-12n+43-20=0\\n^2-12n+23=0\\[/tex]

Now, we will find value of n by using quadratic formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

We have a=1, b=-12 and c=23

[tex]n=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\n=\frac{-(-12)\pm\sqrt{(-12)^2-4(1)(23)}}{2(1)}\\n=\frac{12\pm\sqrt{144-92}}{2}\\n=\frac{12\pm\sqrt{52}}{2}\\n=\frac{12\pm7.21}{2}\\n=\frac{12+7.21}{2} , n=\frac{12-7.21}{2}\\n=9.6 , n=2.3\\[/tex]

So, we get value of n: n=9.6 or n=2.3