Respuesta :

Answer:

The equation of the line is:

  • [tex]y=\frac{1}{4}x+\frac{37}{4}[/tex]

Step-by-step explanation:

Given the points

  • (-5, 8)
  • (-1, 9)

Finding the slope between the points

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-5,\:8\right),\:\left(x_2,\:y_2\right)=\left(-1,\:9\right)[/tex]

[tex]m=\frac{9-8}{-1-\left(-5\right)}[/tex]

[tex]m=\frac{1}{4}[/tex]

Using the point-slope form of the line equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting the values m = 1/4 and the point (-5, 8)

[tex]y-8=\frac{1}{4}\left(x-\left(-5\right)\right)[/tex]

[tex]y-8=\frac{1}{4}\left(x+5\right)[/tex]

Add 8 to both sides

[tex]y-8+8=\frac{1}{4}\left(x+5\right)+8[/tex]

[tex]y=\frac{1}{4}x+\frac{37}{4}[/tex]

Thus, the equation of the line is:

  • [tex]y=\frac{1}{4}x+\frac{37}{4}[/tex]