Respuesta :
Answer:
[tex]\boxed{m = \frac{1}{4}}[/tex]
.
Step-by-step explanation:
Use the form below
[tex]\boxed{\boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }}[/tex]
Where
- [tex]m[/tex] is a slope
- [tex](x_1,~y_1)[/tex] and [tex](x_2,~y_2)[/tex] are the point of the line
.
So, the slope is
[tex](2,~ 1) \to x_1 = 2~and~y_1 = 1[/tex]
[tex](6,~ 2) \to x_2 = 6~and~y_2 = 2[/tex]
.
[tex]m = \frac{2-1}{6-2}[/tex]
[tex]m = \frac{1}{4}[/tex]
.
Happy to help:)
Answer:
[tex]\boxed {\boxed {\sf m=\frac{1}{4}}}[/tex]
Step-by-step explanation:
The slope of a line can be found using the slope formula or dividing the change in y by the change in x.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
where (x₁, y₁) and (x₂, y₂) are the points the line passes through.
We are given the points (2,1) and (6,2). Therefore:
[tex]x_1=2 \\y_1= 1\\x_2= 6\\y_2=2[/tex]
Substitute the points into the formula.
[tex]m=\frac{2-1}{6-2}[/tex]
Solve the numerator.
- 2-1=1
[tex]m=\frac{1}{6-2}[/tex]
Solve the denominator
- 6-2=4
[tex]m=\frac{1}{4}[/tex]
This fraction cannot be reduced further, so it is the slope. It can be written as a decimal too:
[tex]m= 0.25[/tex]
The slope of the line is 1/4 (0.25)