Respuesta :

Answer:

[tex]\boxed{m = \frac{1}{4}}[/tex]

.

Step-by-step explanation:

Use the form below

[tex]\boxed{\boxed{m = \frac{y_2 - y_1}{x_2 - x_1} }}[/tex]

Where

  • [tex]m[/tex] is a slope
  • [tex](x_1,~y_1)[/tex] and [tex](x_2,~y_2)[/tex] are the point of the line

.

So, the slope is

[tex](2,~ 1) \to x_1 = 2~and~y_1 = 1[/tex]

[tex](6,~ 2) \to x_2 = 6~and~y_2 = 2[/tex]

.

[tex]m = \frac{2-1}{6-2}[/tex]

[tex]m = \frac{1}{4}[/tex]

.

Happy to help:)

Answer:

[tex]\boxed {\boxed {\sf m=\frac{1}{4}}}[/tex]

Step-by-step explanation:

The slope of a line can be found using the slope formula or dividing the change in y by the change in x.  

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where (x₁, y₁) and (x₂, y₂) are the points the line passes through.

We are given the points (2,1) and (6,2). Therefore:

[tex]x_1=2 \\y_1= 1\\x_2= 6\\y_2=2[/tex]

Substitute the points into the formula.

[tex]m=\frac{2-1}{6-2}[/tex]

Solve the numerator.

  • 2-1=1

[tex]m=\frac{1}{6-2}[/tex]

Solve the denominator

  • 6-2=4

[tex]m=\frac{1}{4}[/tex]

This fraction cannot be reduced further, so it is the slope. It can be written as a decimal too:

[tex]m= 0.25[/tex]

The slope of the line is 1/4 (0.25)